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An equational description of the extent of the anisotropy in cortical bone is presented from
both the perspective of plane stress (two±dimensional stress state) and plane strain (three±
dimensional stress state). The orthotropic elastic properties that are incorporated in these
states are used to provide a more thorough and re®ned description of planar and volumetric
anisotropy in comparison to the commonly used ratio of elastic moduli. The resulting
anisotropic parametric equations (Zs and Ze) are applied to the elastic material properties
measured from cortical bone within rats, dogs, cows and humans as reported in 12 previous
studies. The resulting calculated parameters reduce the typically nine independent
properties down to three parameters which in turn represent the degree of anisotropy within
the three orthogonal planes of symmetry as are common in cortical bone. It was found that
no statistical difference existed between the plane stress versus plane strain parameter in all
but two studies �p40:10�. Planar and volumetric anisotropies were compared to the isotropic
condition �Zs � Ze � 1:0� for all of the included studies. All of the studies reported cortical
bone properties that were volumetrically anisotropic �p50:05�, however, a common plane of
isotropy was noted in the radial-circumferential (1±2) plane �p40:05�. Future use of these
parametric equations will allow further illucidation of the issue of mesomechanical and
micromechanical levels of anisotropy within other tissues and materials of interest.
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1. Introduction
The evaluation of the elastic properties of cortical bone is

a pursuit that has ranged from the simple to complex in

terms of the quantity and quality of the measured

properties. In early investigations of the mechanical

properties of bone, simple structural tests were com-

pleted in order to quantify basic stiffness parameters [1].

As biomechanical tests incorporated more thorough

experimental and theoretical mechanics techniques,

material properties of bone were soon measured

including Young's and shear moduli [2, 3]. Generally,

cortical bone was viewed as an isotropic material where

the assumptions for simple structural tests satis®ed the

need for extensive elastic evaluation.

As more high-resolution techniques were applied to

bone as well as a hightened appreciation of its

microstructure, an increase in the number of measured

properties were reported. Through the application of

composite theories, full orthotropic descriptions revealed

direction dependencies in its elasticity [4±6]. Techniques

such as ultrasonic elasticity and scanning electron

microscopy revealed detailed material parameters

[7, 8]. This increase in elastic property measurement

allowed for more normalized comparisons of bone and a

thorough description of the responses to physiologic

perturbations.

The basis for the understanding of the anisotropic

nature of bone is drawn from a number of descriptive

levels in the engineering heirarchy representing its

mechanical state. This heirarchy extends from the

structural level (organ and limb) to the mesomechanical

and micromechanical levels (tissue) down to molecular

mechanics (cells). As revealed in studies of bone elastic

properties, this tissue is both anisotropic and hetero-

genous, thus the noted properties are dependent upon the

orientation and location at which they are evaluated. The

local mesomechanical (tissue level) properties are

generally described as orthotropic with reference to the

longitudinal, radial, and circumferential axes of long

bones. This orthotropic characteristic is typical of both

primary and secondary cortical bone. In primary bone,

concentric layers of mineral (lamellae) comprise the
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periosteal to endosteal thickness ( plexiform bone).

Along the boundary of each lamella are small cavities

(lacunae) which contain a single bone cell (osteocyte).

Radiating from each lacuna are tiny canals (canaliculi)

into which the osteocytes extend their cytoplasmic

processes. In the secondary bone that is established in

higher order mammals during bone removal (due to

osteoclasts) and replacement (due to osteoblasts), the

basic structural unit is the longitudinally oriented osteon,

which consists of concentric lamellar rings surrounding a

Haversian canal. Each osteon is bounded by a cement

line and the Haversian canals are connected by

transversely oriented Volkemann's canals. The

Haversian and non-Haversian system constructions,

with their composite arrays of longitudinal and

transverse canals, bias the mechanical response towards

the directionally dependent, orthotropic nature of cortical

bone. At the micromechanical level, a further contribu-

tion to orthotropy is revealed in the longitudinal

arrangement of collagen ®bers with transversely con-

nected crosslinks, all of which are supported by a matrix

of mineral, parallelopiped shaped crystals. Thus the

directional dependence of bony tissue is reiterated at

multiple levels within its constitutive heirarchy.

With the increase in the number of measured and

comparable parameters arises a truer quanti®cation of the

degree of tissue anisotropy. In the present paper, an

equational method is proposed regarding the elastic

description of tissue on three fundamental levels. First,

this description will reduce the complex array of elastic

properties down to a single elastic parameter as a

description for each material plane. Second, the resulting

parameter can account for the in¯uence of all relevant

elastic properties including any possible shear and

longitudinal couplings. Thirdly, the equations are applied

to three-dimensional elastic data from previous biolo-

gical studies thus creating a unique set of comparisons

between species, primary and secondary bone, quad-

ripeds and bipeds, and measurement techniques.

2. Theory development
Normalized elastic properties are, by de®nition, inde-

pendent of tissue geometry. However, the physical

dispersion of the tissue is critical in the deformation

response to a given loading arrangement. If the evaluated

sample has a thickness that is much less than the other

transverse dimensions it is assumed to exist in a state of

plane stress (stress in the thickness direction is zero). An

example of this state would be long bone cortex thickness

compared with long bone circumference and diaphyseal

length. Surface tissue may also be in a state of plane

stress as no contact force would exist to create a stress in

the third dimension. Conversely, if a tissue sample has

equal relative dimensions or represents a location of

multiaxial loading, i.e., a musculotendonous connection

at a bony tubercle or a tissue sample that is internal and

far from a surface, then it may be presumed to be in a

state of plane strain (an off axis dimension is constrained

or has small levels of strain compared to the loaded

plane). Thus an equational description of the extent of the

planar anisotropy can be developed from both the

perspective of plane stress (two-dimensional stress

state) and plane strain (three-dimensional stress state)

via the elastic properties that are involved in these states

[9]. The present paper applies such a development.

3. Planar anisotropy parameters
The development of the planar anisotropy parameters

presented here is expanded for the application to

composite biomaterials such as cortical bone. This

effort addresses the identi®cation of varying types of

elastic symmetry [10] and the characterization of levels

of anisotropy [11, 12].

3.1. Plane stress
In the absence of body forces, plane stress problems in

the theory of anistropic elasticity [13, 14] reduce to a

determination of the local stress function F�x; y�which in

turn satisfy the fourth order partial differential equation

a22

q4F

qx4
ÿ 2a26

q4F

qx3qy
� �2a12 � a66�

q4F

qx2qy2

ÿ 2a16
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� a11

q4F
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where aij�i; j � 1 to 6� are the compliance coef®cients of

the generalized Hooke's law (often seen as sij). The

stiffness matrix is then de®ned as cij � aij
71. The

compliance coef®cients in terms of the recognized

engineering constants are

a11 � 1=E11 a12 � ÿ n21=E22 a13 � ÿ n31=E33

a22 � 1=E22 a23 � ÿ n32=E33 a33 � 1=E33 �2�
a44 � 1=G23 a55 � 1=G13 a66 � 1=G12

where Eii denote Young's moduli, nij Poisson ratios, and

Gij shear moduli (for i, j � 1, 2, and 3 denoting the

material axes such as the radial, circumferential, and

longitudinal orientations, respectively, for long bones).

For orthotropic elasticity in the 1±2 plane, the character-

istic equation of Equation 1 is

a11m
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where i � �������ÿ1
p

. We then de®ne the 1±2 plane stress

anisotropic parameter as
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where only planar elastic properties (four independent
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constants) are incorporated to characterize the planar

(two-dimensional) stress environment. From Equation 6,

the 2±3 and 1±3 plane stress anisotropic parameters are

then

Zs
23 �

1

2

�����������������������������������������
2

E22

E33

ÿ n23

� �
� E22
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s
�7�

and

Zs
13 �

1

2

�����������������������������������������
2

E11

E33

ÿ n13

� �
� E11

G13

s
�8�

respectively. Complimentary parameters of Zs
21, Zs

32 and

Zs
31 can also be determined from the above equations.

Thus, the degree of anisotropy of an orthotropic material

can now be evaluated by three parameters. Equations 6

through 8 are then necessary, but not suf®cient, to

catagorize a material as isotropic. For an isotropic

material, Zij
s � 1, Eii � Ejj and Gij � Eii=�2�1� nij��

as measured from the i±j plane.

3.2. Plane strain
In a similar manner of development, the plane strain

problem is reduced to the determination of the local

stress function F�x; y� which again satisfy the fourth

order partial differential equation similar to Equation 1

and is given by

b22
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� �2b12 � b66�

q4F
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q4F
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� 0 �9�

where bij are the reduced coef®cients of deformation and

are related aij by the following formula:

bij � aij ÿ
aikajk

akk

for

k � 1 and i; j � 2; 3; 4
k � 2 and i; j � 1; 3; 5
k � 3 and i; j � 1; 2; 6

8<:
9=; �10�

For orthotropic elasticity in the 1±2 plane, the character-

istic equation of Equation 9 is

b11m
4 � �2b12 � b66�m4 � b22 � 0 �11�

where the real and complex roots mk are
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Thus the 1±2 plane strain anisotropic parameter is

de®ned as

Ze
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where the out-of-plane elastic properties are now

incorporated to characterize the three±dimensional

stress environment which maintains the planar strain

®eld. The 2±3 and 1±3 plane strain anisotropic

parameters are then
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respectively. Complimentary parameters of Ze
21, Ze

32 and

Ze
31 can also be determined. Again, Equations 14 through

16 are then necessary, but not suf®cient, to catagorize a

material as isotropic. For an isotropic material, Zij
e � 1,

Eii � Ejj and Gij � Eii=�2�1� nij�� as measured from the

i±j plane.

4. Cortical bone application and analysis
Nine independent material properties (Young's and shear

moduli and Poisson's ratios) for cortical bone have been

reported for four different species representing 19

different treatment or control groups (Table I). The

array of samples represents both primary and secondary

cortical bone analyzed using either mechanical or

ultrasonic elasticity techniques. The developed planar

anisotropic parameters presented here were applied to

each of the three orthogonal planes typifying the

orthotropic elastic arrangement of cortical bone (Table

II).

Paired t±tests were used to analyze the resulting

parameters in order to establish any statistical difference

between plane stress versus plane strain derived

descriptions. Absolute values of the differences of all

parameters from the isotropic condition �Z � 1:0� were

tested using one-sample t±tests (hypothesized

mean � 0) to address volumetric anisotropy. Planar

anisotropy was evaluated as a comparison of Zij and

Zji to the isotropic condition for the ij plane.

5. Results and discussion
An equational application has been proposed which

offers another anisotropic description of tissue. This

description reduces the complex array of elastic proper-

ties down to a single comparable elastic parameter for

each material plane. The resulting planar parameter

accounts for the in¯uence of all of the relevant elastic

properties [9] including any possible shear and long-

itudinal couplings that may exist in plane stress and plane

strain scenarios. With the advent of this development, the

equations have been applied to three-dimensional elastic

data from previous biological studies.

The development of the two anisotropic parameters is

based on similar approaches to solving the stress function

F�x; y�. Due to the nature of increased complexity from a

two-dimensional to a three-dimensional stress state, the

plane strain parameter, Ze, is a more thorough

formulation. However, in paired comparisons within

each study, only the elastic properties determined by

Lang [4] �p � 0:078� and Burris [15] �p � 0:033�
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demonstrated a strong statistical difference between

parameters �Zs5Ze�. In future applications it is

recommended to use the simpler plane stress anisotropic

parameter as a measure of the extent or degree of

material anisotropy.

In a comparison between complimentary anisotropy

parameters, Zij and Zji, it is apparent that typically if

Zij51:0 then Zji41:0. This arrangement is due to the

dominance (greater stiffness) of the orientation symbo-

lized by the ®rst of the two subscripts (when > 1.0). This

result may offer further description to the elastic nature

of tissues.

With regard to the evaluation of the elastic data from

the included studies, statistical analyzes of the aniso-

tropic nature was undertaken. Overall, all sets of

properties demonstrated a global volumetric anisotropy

�p50:05�. However, statistical isotropy �p40:05� was

noted in all but two groups in the 1±3 plane, in all but ®ve

groups in the 2±3 plane, and in all but one group in the 1±

2 plane based on one-sample t-tests of the complimentary

(Zij and Zji) plane stress and plane strain parameters

(Table II). Often these results re¯ect the initial planar

isotropies that were assumed within the speci®c study.

An evaluation of the symmetrical elastic nature would

need to be undertaken on individual specimens so that

group averages can be calculated and compared.

Additionally, the parameters may reduce the number of

statistical comparisons between experimental groups

within a study. Previously, up to 10 separate stastical

tests were needed in order to conclude upon a tissue's

level of isotropy [16]. Earlier work applied spatial

averages of stiffness and compliance coef®cients to

determine levels of volumetric anisotropy [11, 12]. The

resulting parameters kept axial and shear elastic proper-

ties separate during the evaluation of anisotropies.

However, those efforts and the parameters presented in

T A B L E I Summary of nine independent material properties including Young's moduli (Eij in GPa), shear moduli (Gij in GPa) and Poisson's ratios

�nij� for cortical bone, as reported for four different species representing 19 different treatment or control groups. The subscripts i, j � 1; 2; and 3

denote the material axes as the radial, circumferential, and longitudinal orientations, respectively, for long bones

Species Rat Rat Rat Rat Rat Rat Rat Rat Rat Rat Cow Human Cow Dog Human Human Human Cow Cow

Trtmnt Dwrf DwrfGH Cont 2G Cont GH Cont GH Cont GH Cont Cont Cont Cont Cont Cont Cont Cont Cont

Bone Femur Femur Femur Femur Femur Femur Femur Femur Femur Femur Phalanx Femur Femur Femur Femur Femur Tibia Femur Femur

Age 51days 51days 74days 74days 9mo 9mo 20mo 20mo 31mo 31mo

Ref. 20 20 21 21 19 19 19 19 19 19 4 5 6 7 7 22 17 18 15

Property

E11 11.68 9.48 13.39 13.28 15.32 16.45 16.87 17.34 19.20 19.39 11.3 18.8 11.6 12.8 12.0 11.5 6.91 6.97 10.79

E22 14.91 9.17 14.30 16.30 20.29 19.74 19.76 21.93 23.94 22.33 11.3 18.8 11.6 15.6 13.4 11.5 8.51 6.97 12.24

E33 17.98 13.84 19.13 17.84 22.13 24.28 23.94 24.60 25.75 24.29 22.0 27.4 21.9 20.1 20.0 17.0 18.4 20.9 18.9

G23 3.65 3.37 7.03 6.72 8.21 7.78 8.16 8.04 8.46 8.45 5.4 8.71 6.99 6.67 6.23 3.3 4.91 6.9 5.96

G31 4.27 3.50 5.86 5.96 6.96 7.10 6.98 7.21 7.42 6.98 5.4 8.71 6.26 5.68 5.61 3.3 3.56 6.9 4.47

G12 4.37 3.31 4.97 5.76 6.59 6.30 6.27 6.54 7.06 7.25 3.8 7.71 5.29 4.68 4.53 3.6 2.41 2.2 3.38

v31 0.373 0.260 0.430 0.507 0.537 0.440 0.433 0.449 0.403 0.399 0.396 0.281 0.206 0.454 0.371 0.46 0.32 0.44 0.42

v21 0.314 0.484 0.350 0.229 0.299 0.329 0.348 0.314 0.347 0.327 0.484 0.310 0.38 0.366 0.422 0.58 0.62 0.55 0.51

v32 0.268 0.308 0.417 0.406 0.376 0.353 0.351 0.329 0.298 0.326 0.390 0.281 0.307 0.341 0.35 0.46 0.31 0.44 0.33

v13 0.247 0.184 0.311 0.394 0.374 0.303 0.308 0.313 0.301 0.334 0.203 0.193 0.109 0.289 0.222 0.31 0.12 0.15 0.24

v12 0.257 0.522 0.338 0.196 0.224 0.298 0.323 0.274 0.297 0.293 0.484 0.312 0.302 0.282 0.376 0.58 0.49 0.55 0.45

v23 0.227 0.200 0.308 0.388 0.373 0.292 0.297 0.296 0.280 0.320 0.203 0.193 0.205 0.265 0.235 0.31 0.14 0.15 0.22

Note: Treatment (Trtmnt) and control (Cont) groups include dwarf rats with growth hormone supplementation (DwrfGH) and without (Dwrf ),

hypergravity treated controls (2G), and growth hormone treatments during aging (GH).

T A B L E I I The resulting anisotropic parameters as developed from plane stress and plane strain assumptions and calculated for each of the

orthotropic elastic descriptions. The statistically anisotropic notations are the result of comparisons of Zij and Zji to the isotropic condition (1.0) for

the i±j plane

Species Rat Rat Rat Rat Rat Rat Rat Rat Rat Rat Cow Human Cow Dog Human Human Human Cow Cow

Trtmnt Dwrf DwrfGH Cont 2G Cont GH Cont GH Cont GH Cont Cont Cont Cont Cont Cont Cont Cont Cont

Bone Femur Femur Femur Femur Femur Femur Femur Femur Femur Femur Phalanx Femur Femur Femur Femur Femur Tibia Femur Femur

Age 51days 51days 74days 74days 9mo 9mo 20mo 20mo 31mo 31mo

Ref 20 20 21a 21a 19 19b 19 19 19 19 4 5 6b 7b 7b,c 22 17 18 15b

Plane stress

Z31 1.22 1.21 1.09 1.04 1.06 1.11 1.11 1.11 1.11 1.11 1.23 1.12 1.21 1.13 1.16 1.29 1.40 1.18 1.23

Z21 1.12 0.97 1.03 1.07 1.09 1.08 1.07 1.11 1.12 1.07 1.00 0.98 0.93 1.10 1.03 1.00 1.06 1.01 1.09

Z32 1.28 1.22 1.02 0.99 1.00 1.08 1.05 1.06 1.06 1.04 1.23 1.12 1.15 1.07 1.11 1.29 1.23 1.1 1.12

Z13 0.98 1.00 0.91 0.89 0.88 0.92 0.93 0.93 0.93 0.99 0.88 0.92 0.88 0.90 0.90 1.06 0.86 0.68 0.93

Z12 0.99 0.98 0.99 0.96 0.95 0.98 0.99 0.99 0.98 0.99 1.00 0.98 0.95 1.00 0.97 1.00 0.96 1.01 1.02

Z23 1.17 0.99 0.89 0.94 0.95 0.97 0.95 0.95 1.00 0.99 0.88 0.93 0.82 0.94 0.91 1.03 0.84 0.68 0.90

Plane strain

Z31 1.28 1.19 1.15 1.14 1.16 1.18 1.16 1.17 1.15 1.15 1.26 1.15 1.28 1.19 1.20 1.28 1.43 1.25 1.24

Z21 1.14 0.97 1.04 1.08 1.10 1.09 1.08 1.12 1.12 1.08 1.00 0.98 0.96 1.11 1.04 1.00 1.10 1.01 1.10

Z32 1.33 1.20 1.07 1.08 1.07 1.12 1.08 1.10 1.08 1.06 1.26 1.15 1.20 1.12 1.14 1.28 1.24 1.25 1.12

Z13 0.95 1.07 0.87 0.82 0.81 0.87 0.90 0.89 0.94 0.96 0.89 0.90 0.85 0.87 0.88 1.17 0.91 0.65 0.95

Z12 0.98 0.98 0.99 0.96 0.95 0.98 0.99 0.99 0.99 1.00 1.00 0.98 0.91 0.99 0.96 1.00 0.93 1.01 1.02

Z23 1.17 1.07 0.84 0.88 0.90 0.94 0.93 0.98 1.02 0.97 0.89 0.90 0.80 0.90 0.90 1.17 0.88 0.65 0.91

a Anisotropic in 1±3 plane �p50:05�
b Anisotropic in 2±3 plane �p50:05�
c Anisotropic in 1±2 plane �p50:05�

264



this paper provide some consistency in results as evident

in the analysis of similar data such as those provided by

Knets and Malmeisters [17]. In general, this work

contributes to the categorization process of the elastic

isotropic versus anisotropic performance of cortical

bone.

Through quanti®cation of the complex three-dimen-

sional elastic properties, there still exists a need for

conclusion of the issue of planar isotropy, especially as

more and more characteristics are incorporated into

tissue adaptation models and orthopedic component

designs. The anisotropic measuring parameters in this

paper should help to simplify this issue in terms of a

representation of all interacting elastic properties. Future

research will investigate further the elastic arrangement

of other connective tissues as well as the musculoskeletal

reality of plane stress and plane strain environments.
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